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Abstract

Recent implementations of path sampling (PS) and stepping-stone sampling (SS) have been shown to outperform the harmonic
mean estimator (HME) and a posterior simulation-based analog of Akaike’s information criterion through Markov chain Monte
Carlo (AICM), in Bayesian model selection of demographic and molecular clock models. Almost simultaneously, a Bayesian
model averaging approach was developed that avoids conditioning on a single model but averages over a set of relaxed clock
models. This approach returns estimates of the posterior probability of each clock model through which one can estimate the
Bayes factor in favor of the maximum a posteriori (MAP) clock model; however, this Bayes factor estimate may suffer when the
posterior probability of the MAP model approaches 1. Here, we compare these two recent developments with the HME,
stabilized/smoothed HME (sHME), and AICM, using both synthetic and empirical data. Our comparison shows reassuringly
that MAP identification and its Bayes factor provide similar performance to PS and SS and that these approaches considerably
outperform HME, sHME, and AICM in selecting the correct underlying clock model. We also illustrate the importance of using
proper priors on a large set of empirical data sets.
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Recent developments in marginal likelihood estimation in
Bayesian phylogenetics and molecular evolution have gener-
ated effective procedures to compare a wide range of evolu-
tionary hypotheses and select the most likely model given the
data at hand. These developments include path sampling (PS,
Ogata 1989; Gelman and Meng 1998; Lartillot and Philippe
2006) and stepping-stone sampling (SS, Xie et al. 2011), which
require additional programming and come at an increased
computational cost compared with posterior-sampling
methods such as the harmonic mean estimator (HME,
Newton and Raftery 1994), the stabilized/smoothed har-
monic mean estimator (SHME, Redelings and Suchard
2005), and a posterior simulation-based analog of Akaike’s
information criterion through Markov chain Monte Carlo
(AICM, Raftery et al. 2007). Newton and Raftery (1994)
pointed out that, although the HME is consistent and asymp-
totically unbiased, it has infinite variance and so may not
perform well in practice. The posterior-sampling methods
have in fact been shown to systematically overestimate the
marginal likelihood, whereas PS and SS accurately estimate
the marginal likelihood with much lower error (Xie et al.
2011), compensating for their increased cost.

Recently, Baele et al. (2012) analyzed both synthetic and
empirical data to compare the performance of PS, SS, HME,
and AICM in selecting molecular clock models and models of

demographic change. In that study, the HME fails to yield
reliable selection of the true model, and the AICM performs
moderately better and may provide a useful initial evaluation
of model choice. The authors further demonstrate that PS
and SS substantially outperform both the HME and AICM
when the true model is known and that conclusions made
concerning previous analyses for three real-world data sets
require adjustment given the outcome of PS and SS com-
pared with the HME.

Although quantifying the marginal likelihood of alternative
models is invaluable when it relates to hypothesis testing,
model selection and its search for a single best-fit model
typically ignores uncertainty about the “correct” model spe-
cification and can lead to overconfident inferences (Hoeting
et al. 1999). Bayesian model averaging (BMA) approaches
have been proposed to explicitly address model uncertainty
by forming a posterior distribution over a set of candidate
models (Madigan and Raftery 1994). In general, BMA does
not provide a method for identifying the most likely model
within the candidate set of models, as the aim of BMA is
often orthogonal to model selection efforts. However, specific
BMA constructions can yield estimates of the posterior prob-
abilities of each of the candidate models (Carlin and Chib
1995). As dividing the posterior odds of two models by
their prior odds returns their Bayes factor, or ratio of marginal
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likelihoods, these constructions do offer a way to quantify
posterior probability support for the different models
within the candidate set of models. A potential limitation
to this approach centers on the accuracy to which one can
estimate each model’s posterior probability, because these
estimates often fall very close 0 or 1 without adjusting the
prior probabilities (Suchard et al. 2005).

In recent work, Li and Drummond (2012) developed a
BMA approach in which the candidate set includes a small
number of relaxed molecular clock models in Bayesian phylo-
genetics. Such relaxed clock models present a useful method
for removing the assumption of a strict molecular clock and
assume no a priori correlation of the rates on adjacent
branches of the tree. Instead, the rate on each branch of
the tree is drawn independently and identically from an
underlying rate distribution. Two main candidates for the
rate distribution among branches are often employed: an
uncorrelated exponential distribution, denoted UCED, and
an uncorrelated lognormal distribution, denoted UCLD. Li
and Drummond (2012) show that their BMA method accur-
ately recovers the true underlying distribution of rates.
Because their construction returns estimates of the posterior
probability of each model, Li and Drummond (2012) also
examine the performance of identifying the maximum a pos-
teriori (MAP) model under BMA as a model selection criter-
ion. The authors found that across a large set of alignments
taken from a data set of 12 mammalian species, a model with
log-normally distributed rates is more likely than exponen-
tially distributed rates in most of the alignments; this is an
expected result given that the exponential distribution has a
mode at 0, whereas the log-normal distribution allows for a
more flexible modeling of the rates and provides confirm-
ation of successful model selection. As far as we know, esti-
mated Bayes factors in favor of the MAP model under BMA
have not yet been compared with Bayes factors obtained
from state-of-the-art marginal likelihood estimation proced-
ures, such as PS and SS, in phylogenetics, which is the aim of
this study.

Here, we reanalyze the synthetic and empirical data sets
previously analyzed by Li and Drummond (2012) using the
HME, sHME, AICM, PS, SS, and MAP (see Materials and
Methods for more information concerning the simulation
process and prior specifications). Additionally, we have
included further simulations under a collection of trees arising
from a Yule birth process rather than the less realistic
balanced tree in Li and Drummond (2012). A total of 100
simulations were run under both the uncorrelated relaxed
molecular clock assuming a UCED and a UCLD. The results
of the simulations are summarized in table 1.

For the data simulated under the UCED clock model for
both the balanced tree and the trees generated under a Yule
birth process, the HME, PS, SS, and MAP recover the true
model in high frequencies (between 90% and 94%) and the
sHME and AICM always recover the true model. Given that the
HME has an infinite variance, its performance (and certainly
that of the sHME and AICM) is unexpectedly good. However,
when the data are simulated under the UCLD clock model
assuming a balanced tree, the HME, sHME, and AICM recover
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Table 1. Model Selection Performance for 100 Simulated Data Sets
under either a Balanced or Yule Tree and Two Relaxed Molecular
Clock Models Using HME, sHME, AICM, PS, SS, and the MAP
Estimated under BMA.

Tree Clock HME sHME AICM PS SS MAP
Balanced UCED 92 100 100 94 94 90
Balanced UCLD 28 5 1 929 929 99
Yule UCED 92 100 100 29 29 97
Yule UCLD 1 1 1 61 61 65

Note—The columns report the number of correct classifications obtained out of
100 simulations.

the true model only in very low frequencies (and in even lower
frequencies for the Yule trees), whereas PS, SS, and MAP almost
always classify the relaxed clock model correctly for the simu-
lations under a balanced tree. The results for MAP are consist-
ent with those reported by Li and Drummond (2012) (where
83 and 100 correct classifications were obtained using the
MAP under the UCED and UCLD clock model, respectively).
The increase in number of correct classifications we observe
may be attributed to the use of proper priors in the analyses
performed in this study. PS, SS, and MAP still clearly outper-
form HME, sHME, and AICM when simulating under a Yule
birth process but no longer achieve the near-ideal perform-
ance of the simulations performed under a balanced tree. In
conclusion, table 1 shows that PS, SS, and MAP offer similar
performance in assessing the correct relaxed molecular clock
model and clearly outperform the HME, sHME, and AICM.

We also applied these methods to the large set of align-
ments taken from 12 mammalian species analyzed in the
work of Li and Drummond (2012), which originally contained
1,056 alignments. After removing 54 alignments for which
convergence could not be reached (even after 200 million
iterations) under BMA and 41 alignments for which the
HME provides inaccurate estimates (for either the UCED or
UCLD model or both; see Li and Drummond [2012] for more
detail) that do not reflect the actual Bayes factor, 961 genes
were retained, which serve as the starting point for the ana-
lyses in this article. While convergence issues appear when
using BMA and the HME, PS and SS on the other hand nat-
urally have difficulties simulating from the prior, due to the
improper priors provided in the original analyses, resulting in
failure to calculate a Bayes factor for 89 additional alignments.
Comparing the analyses for which no convergence problems
(for HME, sHME, and AICM) and no prior sampling problems
(for PS and SS) were reported hence yielded 872 genes for
which the model selection process using HME, sHME, AICM,
PS, SS, and MAP could be performed (fig. 1).

We first focus on reanalyzing these genes using the (im-
proper) prior assumptions of the original publication (Li and
Drummond 2012). At this point, it is crucial to stress that an
improper prior distribution frequently leads to an infinite
marginal likelihood (even if the estimation method returns
a noninfinite value), which in turn implies that the Bayes
factor is not well defined (Spiegelhalter and Smith 1982;
Friel and Petitt 2008), making inference based on improper
priors highly suspect. Despite this importance, attributing
little attention to proper prior specification has become
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Fic. 1. Results for the analysis of a large set of mammalian genes: (A) model selection results for the analysis of 872 genes using improper priors using the
different estimators; (B) model selection results for the analysis of 961 genes using proper priors; (C) comparison of the log Bayes factor estimates for a
common set of 872 genes for the MAP and sHME (gray) and for the MAP and SS (black), assuming improper priors; and (D) comparison of the log
Bayes factor estimates for a common set of 961 genes for the MAP and sHME (gray) and for the MAP and SS (black), assuming proper priors.

common practice when calculating Bayes factors in phylo-
genetics, and this can inadvertently affect model comparison
conclusions as we demonstrate here.

When using improper priors, the HME selects the UCED
model over the UCLD model in 47% of the genes (and the
SsHME in 41% of the genes), whereas the AICM prefers the
UCED model in 39% of the genes (fig. 1A). On the other hand,
PS and SS select the UCED model over the UCLD model in
only approximately 7% of the genes. MAP yields a result in
between the posterior-sampling methods and PS/SS, selecting
the UCED model in for 21% of the genes. Even though PS, SS,
and MAP have both been shown to be more accurate than
the HME (Baele et al. 2012; Li and Drummond 2012), their
performance differs considerably, with MAP selecting the
UCED model nearly three times as much as PS and SS.

Using proper priors (see Materials and Methods), however,
the results change substantially, as can be seen in figure 1B.
Contrary to when assuming improper priors, PS and SS no
longer suffer from prior sampling issues and yield an estimate
of the marginal likelihood for all 961 genes. In this case, the
HME selects the UCED model in 51% of the genes (and the
SHME in 55% of the genes), whereas the AICM prefers
the UCED clock model over the UCLD clock model in 52%
of the genes. PS and SS select the UCED model over the UCLD
model in only 12% of the genes, and MAP prefers the UCED
model in 13% of the genes. The use of proper priors therefore
appears to result in a convergence of the model preference for
PS, SS, and MAP. To confirm this, we checked to which degree
the classification results overlap between SS, sHME, and MAP.
In the case of improper priors, MAP and SS yield the same
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model classification in 78% of the genes, whereas MAP and
sHME do so for 70% of the genes and SS and sHME only agree
in 60% of the genes. In the case of proper priors, however,
MAP and SS yield the same model classification in 90% of the
genes, whereas MAP and sHME agree in merely 52% of the
genes, and SS and sHME agree in 51% of the genes. This
indicates that in terms of model classification for PS, SS,
and MAP, the results are highly correlated and clearly differ-
ent from those of HME, sHME, and AICM, which select the
UCED model in over half the genes.

In figure 1C, we show the original scatter plot employing
improper priors of the log Bayes factors for the mammalian
data calculated using MAP versus the HME (in gray) and a
scatter plot of the log Bayes factors calculated by using MAP
versus SS (in black). The correlation coefficients between the
different log Bayes factor estimators appear to be rather low,
that is, 0.37 between MAP and HME and 0.44 between MAP
and SS. In figure 1D, we summarize the same comparison for
the mammalian data between the log Bayes factors when
specifying proper priors, with the log Bayes factor comparison
between MAP and sHME again shown in gray and the log
Bayes factor comparison between MAP and SS shown in
black. Outliers for both figure 1C and D were removed by
computing leverage coefficients (Hoaglin and Welsch 1978)
as in Li and Drummond (2012). When using proper priors, the
correlation coefficient between MAP and HME equals —0.18,
whereas the correlation coefficient between MAP and SS was
0.79, indicating a strong agreement for their model classifica-
tion. Hence, the agreement between MAP and SS strongly
depends on the specification of proper priors, leading to es-
timable marginal likelihoods. Similar conclusions can be
reached for MAP and PS (data not shown).

In conclusion, our simulations demonstrate that PS, SS,
and MAP outperform HME, sHME, and AICM when compar-
ing relaxed molecular clock models, achieving correct classi-
fication in more than 90% of the simulated data sets
generated on a balanced tree. The analysis of real gene data
sets also shows that PS, SS, and MAP offer very similar results.
These models select the UCLD model in 87% of the genes,
whereas HME, sHME, and AICM select the UCLD model in
less than 50% of the genes and are hence strongly drawn
toward the UCED model. Further, we have shown the im-
portance of using proper priors when performing model
selection. Only when assuming proper priors does the calcu-
lation of (log) Bayes factors make sense and offer a valid ap-
proach for performing model selection. Once proper priors
are used, the log Bayes factors of the MAP under BMA and
PS/SS are highly correlated and hence their model selection
outcomes very similar. This is not the case for MAP and
sHME, of which the (log) Bayes factors are uncorrelated,
showing once again the poor performance of the sHME
when classifying models. MAP seems to be the preferred
model selection approach for the problems presented in
this article as it removes the burden of model selection
from the user and requires the least amount of computation.
However, it is not generally applicable between any two or
more models that need to be compared and requires a spe-
cific strategy for each class of models. Although
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computationally more demanding, PS and SS allow for a
more general comparison of models and can address cases
for which a candidate set under BMA is unavailable.

Materials and Methods

We calculate marginal likelihoods using PS (Gelman and
Meng 1998; Ogata 1989; Lartillot and Philippe 2006), SS (Xie
et al. 2011), HME (Newton and Raftery 1994), and sHME
(Redelings and Suchard 2005). We use the recommendation
of Xie et al. (2011) in selecting B values between the path from
prior to posterior according to evenly spaced quantiles of a
Beta(e,1.0) distribution and therefore choose « = 0.3, which
places most of the computational effort on 8 values near zero,
which should result in increased accuracy. Additionally, we
employ the AICM to perform model selection (Raftery et al.
2007). We note that a posterior simulation-based analog of
the Bayesian information criterion through Markov chain
Monte Carlo has also been proposed (Raftery et al. 2007),
an approach that has a more direct Bayesian justification
but requires specification of a sample size for each parameter,
which may be problematical in some applications. For more
detailed information on these methods and the way they are
implemented in BEAST (Drummond et al. 2012), we refer
interested readers to Baele et al. (2012). BMA between the
UCED and UCLD clock models was performed using the ap-
proach of Li and Drummond (2012) that assumes that the
prior probability of each model is equal, that is, there is no
prior knowledge as to which model is preferred. As a conse-
quence, the ratio of the posterior probabilities of the two
models equals the Bayes factor as the prior odds equals 1.
Data were first simulated using a balanced tree of 32 taxa
and an additional outgroup, with the divergence times on
each branch set to 5 time units, except the outgroup branch
which had a length of 30 to make the tree ultrametric. A
second set of simulations was generated using a collection
of 100 trees generated using a Yule birth process with a birth
rate of 0.2, leading to an average branch length of ~2.5 time
units. For each of the branches on a tree, we assigned a rate of
substitution drawn from either a UCED with a mean of 0.005
or a UCLD with a mean of 0.005 and variance of 0.004. One
hundred realizations of rates were simulated under each of
the two relaxed clock models, and alignments of 1,000 bp in
length were subsequently generated using Seq-Gen (Rambaut
and Grassly 1997) under a Hasegawa—Kishino—Yano (HKY,
Hasegawa et al. 1985) model with gamma-distributed rate
heterogeneity across sites (Yang 1996) with a transition—
transversion ratio of 3.0 and a shape parameter of 0.5. We
used the simulation settings described in Li and Drummond
(2012) but fitted the analyses with proper priors. A proper
prior is a probability distribution that integrates to 1. The
frequently used constant function on an infinite interval is
often inaccurately called a uniform distribution, although it is
actually an example of an improper prior. In general, the use
of such priors can lead to posterior distributions that do not
exist (i.e, are not probability distributions). In practice, be-
cause standard floating-point representations of numbers
have a maximum attainable value, the implementation of
this prior in a computer can actually be regarded as proper,
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but regardless, such priors are effectively improper and pro-
vide a great challenge to MCMC sampling. This is evident in
the results presented here. Specifically, we used the following
priors: a Yule pure birth process was used as a prior on the
speciation process for the simulations (Yule 1924), with a
diffuse normally distributed prior on the log birth rate (log
1 =10, log o = 1.25); a birth—death process (Gernhard 2008)
was used as a prior on the speciation process for the empirical
data analyses with a diffuse lognormal prior (1 =17.5, log
o =2.5), centered on the mean of the estimated birth rates
found in Li and Drummond (2012), for the log growth rate of
the birth—death process and a uniform prior (between 0.0
and 1.0) on the relative death rate; a diffuse normally distrib-
uted prior on the log transition—transversion parameter of
the HKY model (log 1« = 1.0, log o = 1.25) for the simulations;
diffuse gamma distributed priors on the relative rate param-
eters of the general time-reversible (GTR) model (Tavaré
1986) for the empirical data analyses (Gamma(0.05;20.0) for
rac; Gamma(0.05;10.0) for rac, rat, rca and rgr); an exponen-
tial prior (with mean 0.5) on the rate heterogeneity parameter
(Yang 1996); an exponential prior (with mean 1/3) on the
standard deviation of the UCLD clock model; and a
Dirichlet(1,1,1,1) distribution on the base frequencies. For
one of the empirical data sets analyzed in this article, we
provide five example XML files in the supplementary material,
Supplementary Material online: one illustrating the use of the
BMA approach, two illustrating the use of the posterior-based
estimators (HME, sHME, and AICM; one for the UCED and
one for the UCLD model), and two illustrating the use of the
PS and SS approaches (one for the UCED and one for the
UCLD model).

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).
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